Computing Exponential for Iterative Splitting Methods: Algorithms and Applications
نویسنده
چکیده
Iterative splitting methods have a huge amount to compute matrix exponential. Here, the acceleration and recovering of higher-order schemes can be achieved. From a theoretical point of view, iterative splitting methods are at least alternating Picards fix-point iteration schemes. For practical applications, it is important to compute very fast matrix exponentials. In this paper, we concentrate on developing fast algorithms to solve the iterative splitting scheme. First, we reformulate the iterative splitting scheme into an integral notation of matrix exponential. In this notation, we consider fast approximation schemes to the integral formulations, also known as φfunctions. Second, the error analysis is explained and applied to the integral formulations. The novelty is to compute cheaply the decoupled exp-matrices and apply only cheap matrix-vector multiplications for the higher-order terms. In general, we discuss an elegant way of embedding recently survey on methods for computing matrix exponential with respect to iterative splitting schemes. We present numerical benchmark examples, that compared standard splitting schemes with the higher-order iterative schemes. A real-life application in contaminant transport as a two phase model is discussed and the fast computations of the operator splitting method is explained.
منابع مشابه
Iterative Operator Splitting Methods: Relation to Waveform Relaxation and Exponential Splitting Methods
In this paper we describe a technique for closed formulation of an iterative operator-splitting method and embed the method in the classical exponential splitting methods. Since iterative operator splitting have been developed, an abstract framework to relate the method to other classical splitting methods is needed. Here an abstract framework considering the iterative splitting method as wavef...
متن کاملComparison results on the preconditioned mixed-type splitting iterative method for M-matrix linear systems
Consider the linear system Ax=b where the coefficient matrix A is an M-matrix. In the present work, it is proved that the rate of convergence of the Gauss-Seidel method is faster than the mixed-type splitting and AOR (SOR) iterative methods for solving M-matrix linear systems. Furthermore, we improve the rate of convergence of the mixed-type splitting iterative method by applying a preconditio...
متن کاملOn the modified iterative methods for $M$-matrix linear systems
This paper deals with scrutinizing the convergence properties of iterative methods to solve linear system of equations. Recently, several types of the preconditioners have been applied for ameliorating the rate of convergence of the Accelerated Overrelaxation (AOR) method. In this paper, we study the applicability of a general class of the preconditioned iterative methods under certain conditio...
متن کاملWeights in block iterative methods
In this paper we introduce a sequential block iterative method and its simultaneous version with op-timal combination of weights (instead of convex combination) for solving convex feasibility problems.When the intersection of the given family of convex sets is nonempty, it is shown that any sequencegenerated by the given algorithms converges to a feasible point. Additionally for linear feasibil...
متن کاملA mathematically simple method based on denition for computing eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices
In this paper, a fundamentally new method, based on the denition, is introduced for numerical computation of eigenvalues, generalized eigenvalues and quadratic eigenvalues of matrices. Some examples are provided to show the accuracy and reliability of the proposed method. It is shown that the proposed method gives other sequences than that of existing methods but they still are convergent to th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Applied Mathematics
دوره 2011 شماره
صفحات -
تاریخ انتشار 2011